Đề bài

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Khẳng định nào sau đây là đúng?

  • A.
    \(SA \bot BC\).
  • B.
    \(SA \bot AC\).
  • C.
    \(SA \bot AB\).
  • D.
    Cả A, B, C đều đúng.
Phương pháp giải

Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải của GV HocTot.Nam.Name.Vn

Vì \(SA \bot \left( {ABC} \right)\) và \(AB,BC,CA \subset \left( {ABC} \right)\) nên \(SA \bot BC\), \(SA \bot AC\), \(SA \bot AB\).

Đáp án D.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

Chọn đáp án đúng.

Cho số thực a và số nguyên dương n \(\left( {n \ge 2} \right)\). Số b được gọi là căn bậc n của số a nếu:

Xem lời giải >>
Bài 3 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 4 :

Rút gọn biểu thức \(\left( {{9^{3 + \sqrt 3 }} - {9^{\sqrt 3  - 1}}} \right){.3^{ - 2\sqrt 3 }}\) được kết quả là:

Xem lời giải >>
Bài 5 :

Cho a, b là các số thực dương. Rút gọn biểu thức \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^8}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}}\)

Xem lời giải >>
Bài 6 :

Chọn đáp án đúng.

Xem lời giải >>
Bài 7 :

Chọn đáp án đúng.

Cho a, b là các số thực dương. Giá trị của \(\ln \frac{a}{b} + \ln \frac{b}{a}\) bằng:

Xem lời giải >>
Bài 8 :

Chọn đáp án đúng.

Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có:

Xem lời giải >>
Bài 9 :

Cho \({\log _a}b = 4\). Giá trị của \({\log _a}\left( {{a^3}{b^2}} \right)\) bằng:

Xem lời giải >>
Bài 10 :

Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 1000\). Giá trị của biểu thức \(P = 3\log a + 2\log b\) là:

Xem lời giải >>
Bài 11 :

Trong các hàm số dưới đây, hàm số nào nghịch biến trên \(\left( {0; + \infty } \right)\)?

Xem lời giải >>
Bài 12 :

Hàm số nào dưới đây là hàm số đồng biến trên \(\mathbb{R}\)?

Xem lời giải >>
Bài 13 :

Đồ thị hàm số \(y = {6^{2x}}\) luôn đi qua điểm nào dưới đây?

Xem lời giải >>
Bài 14 :

Chọn đáp án đúng.

Hàm số \(y = \log x\) có cơ số là:

Xem lời giải >>
Bài 15 :

Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) thể hiện ở hình vẽ dưới đây.

Khẳng định nào dưới đây là đúng?

Xem lời giải >>
Bài 16 :

Tập xác định của hàm số \(y = \frac{1}{{\sqrt {3 - x} }} + \ln \left( {x - 1} \right)\) là:

Xem lời giải >>
Bài 17 :

Bất phương trình \({6^x} \ge b\) có tập nghiệm là \(\mathbb{R}\) khi:

Xem lời giải >>
Bài 18 :

Tập nghiệm của bất phương trình \({\left( {\frac{1}{\pi }} \right)^x} > {\left( {\frac{1}{\pi }} \right)^3}\) là:  

Xem lời giải >>
Bài 19 :

Tập nghiệm của bất phương trình \(\log x \ge 2\) là:

Xem lời giải >>
Bài 20 :

Cho phương trình \({4^x} + {2^{x + 2}} - 5 = 0\). Đặt \(t = {2^x}\) ta được phương trình là:

Xem lời giải >>