Nội dung từ Loigiaihay.Com
Giải phương trình: \({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{0,5}}\left( {{2^{x + 1}} - 3} \right)\).
Nếu \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))
Điều kiện:
\({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{0,5}}\left( {{2^{x + 1}} - 3} \right) \Leftrightarrow {\log _2}\left( {{4^x} + 4} \right) = x + {\log _2}\left( {{2^{x + 1}} - 3} \right) \Leftrightarrow x = {\log _2}\frac{{{{\left( {{2^x}} \right)}^2} + 4}}{{{{2.2}^x} - 3}}\)
\( \Leftrightarrow \frac{{{{\left( {{2^x}} \right)}^2} + 4}}{{{{2.2}^x} - 3}} = {2^x} \Rightarrow {2^x}\left( {{{2.2}^x} - 3} \right) = {\left( {{2^x}} \right)^2} + 4 \Rightarrow {\left( {{2^x}} \right)^2} - {3.2^x} - 4 = 0\) (*)
Đặt \({2^x} = t\left( {t > 0} \right)\) thì phương trình (*) trở thành: \({t^2} - 3t - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\left( L \right)\\t = 4\left( {TM} \right)\end{array} \right.\)
Với \(t = 4\) thì \({2^x} = 4 \Leftrightarrow x = 2\) (thỏa mãn điều kiện)
Vậy phương trình có nghiệm là: \(x = 2\).
Các bài tập cùng chuyên đề
Cho hàm số: \(y = \ln \left[ {\left( {2 - m} \right){x^2} - 2x + 1} \right]\).
a) Với \(m = 1\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định với mọi giá trị thực của x.
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Cạnh bên CC’ vuông góc với đáy và \(CC' = a\). Gọi M, I lần lượt là trung điểm của BB’, BC.
a) Chứng minh rằng: \(AM \bot BC'\).
b) Gọi K là điểm trên đoạn A’B’ sao cho \(B'K = \frac{a}{4}\) và J là trung điểm của B’C’. Chứng minh rằng: \(AM \bot MK\) và \(AM \bot KJ\).