Đề bài

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và tam giác ABC vuông tại B. Kẻ \(AH \bot SB\left( {H \in SB} \right)\). Khẳng định nào dưới đây là sai?

  • A.
    \(BC \bot SA\).
  • B.
    \(BC \bot AH\).
  • C.
    \(AH \bot AC\).
  • D.
    \(AH \bot SC\).
Phương pháp giải

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải của GV HocTot.Nam.Name.Vn

Vì \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\).

Tam giác ABC vuông tại B nên \(AB \bot BC\)

Ta có: \(SA \bot BC\), \(AB \bot BC\), SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB) nên \(BC \bot \left( {SAB} \right)\). Mà \(AH \subset \left( {SAB} \right) \Rightarrow BC \bot AH\)

Ta có: \(BC \bot AH,AH \bot SB\), SB và BC cắt nhau tại B và nằm trong mặt phẳng (SBC). Do đó, \(AH \bot \left( {SBC} \right)\), mà \(SC \subset \left( {SBC} \right) \Rightarrow SC \bot AH\)

Nếu \(AH \bot AC\), mà \(SA \bot AC \Rightarrow AC \bot \left( {SAH} \right) \Rightarrow AB \bot AC\) (vô lí)

Đáp án C.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có:

Xem lời giải >>
Bài 2 :

Chọn đáp án đúng

Cho a, b là những số thực dương, \(\alpha \) là số thực bất kì. Khi đó:

Xem lời giải >>
Bài 3 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 4 :

Rút gọn biểu thức \({\left( {{a^{\sqrt 3 }}.{b^{\frac{{ - 6}}{{\sqrt 3 }}}}} \right)^{\frac{1}{{\sqrt 3 }}}}\) (với \(a,b > 0\)) được kết quả là:

Xem lời giải >>
Bài 5 :

Giá trị của biểu thức \({\left( {\sqrt 5  - 2} \right)^{2024}}.{\left( {\sqrt 5  + 2} \right)^{2025}}\)

Xem lời giải >>
Bài 6 :

Chọn đáp án đúng.

Với \(0 < a \ne 1,b,c > 0\) thì:

Xem lời giải >>
Bài 7 :

Chọn đáp án đúng.

Với a, b, c là các số dương và \(a \ne 1,b \ne 1\) thì:

Xem lời giải >>
Bài 8 :

Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 9 :

Tính \({\log _8}1250\) theo a biết \(a = {\log _2}5\).

Xem lời giải >>
Bài 10 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 11 :

Đồ thị hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đi qua điểm:

Xem lời giải >>
Bài 12 :

Hàm số nào dưới đây là hàm số lôgarit cơ số 2?

Xem lời giải >>
Bài 13 :

Hàm số nào dưới đây nghịch biến trên \(\mathbb{R}\)?

Xem lời giải >>
Bài 14 :

Tập giá trị của hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là:

Xem lời giải >>
Bài 15 :

Tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là:

Xem lời giải >>
Bài 16 :

Cho hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\). Biết rằng: \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = M,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = m\). Khi đó:

Xem lời giải >>
Bài 17 :

Với giá trị nào của b thì phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\) vô nghiệm?

Xem lời giải >>
Bài 18 :

Nghiệm của phương trình \({\left( {\sqrt 3 } \right)^x} = 3\) là:

Xem lời giải >>
Bài 19 :

Phương trình \({\log _2}x =  - 2\) có nghiệm là:

Xem lời giải >>
Bài 20 :

Nghiệm của phương trình \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }}\) là:

Xem lời giải >>