Đề bài

Cho hình chóp tứ giác S. ABCD có đáy ABCD là hình thang, AD//BC, \(AD = 2BC\). Gọi O là giao điểm của AC và BD. Gọi G là trọng tâm của tam giác SCD. Chứng minh rằng OG//(SBC).

Phương pháp giải

Sử dụng kiến thức về đường thẳng song song với mặt phẳng: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong mặt phẳng (P) thì a song song với P.

Lời giải của GV HocTot.Nam.Name.Vn

Gọi E là giao điểm của AB và CD.

Vì AD//BC nên $\Delta EBC\backsim \Delta EAD\Rightarrow \frac{EB}{EA}=\frac{EC}{ED}=\frac{BC}{AD}=\frac{1}{2}\Rightarrow EB=\frac{1}{2}EA,EC=\frac{1}{2}ED$

Do đó, B là trung điểm của AE, C là trung điểm của DE.

Suy ra, BD, AC là hai đường trung tuyến của tam giác ADE. Mà O là giao điểm của AC và BD.

Do đó, O là trọng tâm của tam giác ADE. Do đó, \(\frac{{DO}}{{DB}} = \frac{2}{3}\)

Gọi I là trung điểm của SC. Vì G là trọng tâm của tam giác SCD nên \(\frac{{DG}}{{DI}} = \frac{2}{3}\)

Tam giác DIB có: \(\frac{{DG}}{{DI}} = \frac{{DO}}{{DB}} = \frac{2}{3}\) nên OG//IB (định lý Thalès đảo). Mà \(IB \subset \left( {SBC} \right)\) nên OG//(SBC).

Các bài tập cùng chuyên đề

Bài 1 :

Nghiệm của phương trình \(\tan 2x = \tan \frac{\pi }{4}\) là:

Xem lời giải >>
Bài 2 :

\(x = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\) là nghiệm của phương trình:

Xem lời giải >>
Bài 3 :

Tập giá trị của hàm số \(y = \cos x\) là:

Xem lời giải >>
Bài 4 :

Hàm số nào sau đây là hàm số lẻ?

Xem lời giải >>
Bài 5 :

Hình vẽ dưới đây là đồ thị của hàm số nào?

Xem lời giải >>
Bài 6 :

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Số hạng tổng quát \({u_n}\) được xác định theo công thức:

Xem lời giải >>
Bài 7 :

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q. Số hạng tổng quát \({u_n}\) được xác định theo công thức:

Xem lời giải >>
Bài 8 :

Dãy số nào dưới đây gồm các số tự nhiên chẵn nhỏ hơn 10?

Xem lời giải >>
Bài 9 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 10 :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng (a; b) chứa điểm \({x_0}\). Hàm số f(x) được gọi là liên tục tại điểm \({x_0}\) nếu:

Xem lời giải >>
Bài 11 :

Cho hàm số f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 2\). Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} 3f\left( x \right)\).

Xem lời giải >>
Bài 12 :

Cho dãy số \(\left( {{u_n}} \right)\) có \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 6\), dãy số \(\left( {{v_n}} \right)\) có  \(\mathop {\lim }\limits_{n \to  + \infty } {v_n} = 2\). Chọn khẳng định đúng:

Xem lời giải >>
Bài 13 :

Trong các câu sau, câu nào sai?

Xem lời giải >>
Bài 14 :

Cho hình chóp S. ABCD với ABCD là hình bình hành tâm O. Gọi E là trung điểm của SA. Đường thẳng OE nằm trong mặt phẳng nào?

Xem lời giải >>
Bài 15 :

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải >>
Bài 16 :

Chọn câu đúng:

Xem lời giải >>
Bài 17 :

Hình tứ diện đều có bốn mặt là hình gì?

Xem lời giải >>
Bài 18 :

Chọn câu đúng:

Xem lời giải >>
Bài 19 :

Cho hai góc nhọn a và b. Biết \(\cos a = \frac{1}{3};\cos b = \frac{1}{5}\). Giá trị \(\cos \left( {a + b} \right).\cos \left( {a - b} \right)\) bằng:

Xem lời giải >>
Bài 20 :

Nghiệm của phương trình \(\sin 2x - \cos x = 0\) là:

Xem lời giải >>