Đề bài

Tính giới hạn sau: \(I = \mathop {\lim }\limits_{n \to  + \infty } \frac{{2 + {2^2} + {2^2} + ... + {2^n}}}{{3 + {3^2} + {3^3} + ... + {3^n}}}\)

Phương pháp giải

Sử dụng kiến thức về giới hạn của của dãy số để tính: \(\lim {q^n} = 0\left( {\left| q \right| < 1} \right)\)

Lời giải của GV HocTot.Nam.Name.Vn

Mẫu thức là tổng của n số hạng đầu tiên của một cấp số nhân có số hạng đầu \({u_1} = 3\) và công bội \(q = 3\)

Do đó, \(3 + {3^2} + {3^3} + .. + {3^n} = \frac{{3\left( {{3^n} - 1} \right)}}{{3 - 1}} = \frac{3}{2}\left( {{3^n} - 1} \right)\)

Tử thức là tổng của n số hạng đầu tiên của một cấp số nhân có số hạng đầu \({u_1} = 2\) và công bội \(q = 2\)

Do đó, \(2 + {2^2} + {2^2} + ... + {2^n} = \frac{{2\left( {{2^n} - 1} \right)}}{{2 - 1}} = 2\left( {{2^n} - 1} \right)\)

Khi đó, \(I = \mathop {\lim }\limits_{n \to  + \infty } \left( {\frac{4}{3}.\frac{{{2^n} - 1}}{{{3^n} - 1}}} \right) = \frac{4}{3}\mathop {\lim }\limits_{n \to  + \infty } \frac{{{2^n} - 1}}{{{3^n} - 1}} = \frac{4}{3}\mathop {\lim }\limits_{n \to  + \infty } \frac{{{{\left( {\frac{2}{3}} \right)}^n} - \frac{1}{{{3^n}}}}}{{1 - \frac{1}{{{3^n}}}}} = 0\)

Các bài tập cùng chuyên đề

Bài 1 :

Chọn đáp án đúng

Xem lời giải >>
Bài 2 :

Một cung của đường tròn bán kính R và có số đo \(\alpha \) rad thì có độ dài là:

Xem lời giải >>
Bài 3 :

Nghiệm của phương trình \(\cos x = 1\) là:

Xem lời giải >>
Bài 4 :

Hàm số \(y = \tan x\) đồng biến trên:

Xem lời giải >>
Bài 5 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 6 :

Trong các dãy số sau, dãy số nào là dãy số giảm?

Xem lời giải >>
Bài 7 :

Trong các dãy số sau, dãy số nào là cấp số nhân?

Xem lời giải >>
Bài 8 :

Dãy số nào dưới đây được viết dưới dạng hệ thức truy hồi?

Xem lời giải >>
Bài 9 :

Biết \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  + \infty ,\mathop {\lim }\limits_{n \to  + \infty } {v_n} = a < 0\). Chọn đáp án đúng

Xem lời giải >>
Bài 10 :

Cấp số nhân lùi vô hạn \(\left( {{u_n}} \right)\) với công bội q, số hạng đầu \({u_1}\) thì có tổng là:

Xem lời giải >>
Bài 11 :

Giá trị của \(\mathop {\lim }\limits_{n \to  + \infty } {\left( {\frac{2}{3}} \right)^n}\) bằng:

Xem lời giải >>
Bài 12 :

Giá trị của \(\mathop {\lim }\limits_{x \to \frac{1}{3}} \left( {3x + 2} \right)\) là:

Xem lời giải >>
Bài 13 :

Chọn đáp án đúng.

Xem lời giải >>
Bài 14 :

Cho bốn điểm A, B, C, D không đồng phẳng. Hình gồm bốn tam giác ABC, ACD, ABD và BCD được gọi là hình gì?

Xem lời giải >>
Bài 15 :

Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có bao nhiêu đường thẳng song song với đường thẳng đã cho?

Xem lời giải >>
Bài 16 :

Cho hình hộp ABCD. A’B’C’D’. Hình hộp này có bao nhiêu đường chéo?

Xem lời giải >>
Bài 17 :

Chọn đáp án đúng.

Xem lời giải >>
Bài 18 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 19 :

Giá trị của biểu thức \(\cos \left( {\frac{\pi }{2} - \alpha } \right) - \sin \left( {\pi  - \alpha } \right)\) bằng:

Xem lời giải >>
Bài 20 :

Cho tam giác ABC. Chọn đáp án đúng:

Xem lời giải >>