Nội dung từ Loigiaihay.Com
1. Trên giấy kẻ ô vuông (độ dài ô vuông bằng 1cm ), cho tam giác ABC như hình bên. Tính độ dài mỗi cạnh của tam giác ABC
2. Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC và K là điểm đối xứng với M qua điểm I.
a) Tứ giác AKCM là hình gì? Vì sao?
b) Chứng minh: AKMB là hình bình hành.
c) Tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông.
1. Dựa vào định lí Pythagore để tính.
2.
a) Tứ giác AKCM là hình chữ nhật.
b) Chứng minh AKMB có hai cạnh đối song song và bằng nhau.
c) AKCM là hình vuông thì các cạnh phải bằng nhau.
1.
Gọi các điểm D, E và F như trên hình vẽ. Khi đó ta có các tam giác vuông ACD vuông tại D; BCE vuông tại E và ABF vuông tại F.
Tam giác ACD có AD = 3cm; CD = 4cm. Áp dụng định lí Pythagore vào tam giác ADC, ta có:
\(\begin{array}{l}A{C^2} = A{D^2} + C{D^2} = {3^2} + {4^2} = 25\\ \Rightarrow AC = 5cm\end{array}\)
Tam giác BCE có BE = 5cm; CE = 3cm. Áp dụng định lí Pythagore vào tam giác BCE, ta có:
\(\begin{array}{l}B{C^2} = B{E^2} + C{E^2} = {5^2} + {3^2} = 34\\ \Rightarrow BC = \sqrt {34} cm\end{array}\)
Tam giác ABF có AF = 1cm; BF = 2cm. Áp dụng định lí Pythagore vào tam giác ABF, ta có:
\(\begin{array}{l}A{B^2} = A{F^2} + F{B^2} = {1^2} + {2^2} = 5\\ \Rightarrow AB = \sqrt 5 cm\end{array}\)
2.
a) Xét tứ giác AKCM có: I là trung điểm của AC; I là trung điểm của KM (vì M đối xứng với K qua I)
=> AKCM là hình bình hành.
Xét tam giác ABC cân tại A có M là trung điểm của BC nên AM là đường trung tuyến đồng thời là đường cao của tam giác ABC. => \(\widehat {AMC} = {90^0}\).
Hình bình hành AKCM có \(\widehat {AMC} = {90^0}\) nên là hình chữ nhật.
b) Ta có AKCM là hình chữ nhật nên AK // CM và AK = CM.
Mà BM = CM nên BM = AK và BM // AK. => Tứ giác AKMB là hình bình hành.
c) Để AKCM là hình chữ nhật thì AM = MC = \(\frac{1}{2}\) Mà AM là đường trung tuyến của tam giác ABC nên khi đó AM là đường trung tuyến ứng với cạnh huyền của tam giác ABC hay tam giác ABC vuông tại A.
Các bài tập cùng chuyên đề
Cho hình chóp tam giác đều có độ dài cạnh bên bằng 4 cm và độ dài cạnh đáy bằng 3cm như hình bên dưới, hình nào là hình khai triển của hình chóp tam giác đều đã cho?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 3cm, chiều cao của hình chóp là h = 2cm. Thể tích của hình chóp đã cho là :
Hai đường chéo hình thoi có độ dài 8cm và 10cm. Cạnh của hình thoi có độ dài là:
Cho biểu thức : \(A = \frac{1}{{x + 4}} + \frac{x}{{x - 4}} + \frac{{24 - {x^2}}}{{{x^2} - 16}}\)
a) Viết điều kiện xác định của biểu thức A.
b) Chứng minh \(A = \frac{5}{{x - 4}}\).
c) Tính giá trị của biểu thức A tại x = 10.
d) Tìm các số nguyên x để giá trị của biểu thức A là số nguyên.
a) Rút gọn biểu thức sau:
\(A = \left( {x + 5} \right)\left( {x + 1} \right) + \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) - x\left( {{x^2} + x - 2} \right)\)
b) Tính nhanh: 742 + 242 – 48.74.