Nội dung từ Loigiaihay.Com
Đa thức \(4{b^2}{c^2}-{\left( {{c^2} + {b^2}-{a^2}} \right)^2}\) được phân tích thành
\(\begin{array}{*{20}{l}}{4{b^2}{c^2}\;-{{\left( {{c^2}\; + {b^2}\;-{a^2}} \right)}^2}}\\{\;\;\;\;\;\;\;\;\; = {{\left( {2bc} \right)}^2}\;-{{\left( {{c^2}\; + {b^2}\;-{a^2}} \right)}^2}}\\{\;\;\;\;\;\;\;\;\; = \left( {2bc + {c^2}\; + {b^2}\;-{a^2}} \right)\left( {2bc-{c^2}\;-{b^2}\; + {a^2}} \right)}\\{\;\;\;\;\;\;\;\;\; = \left[ {{{\left( {b + c} \right)}^2}\;-{a^2}} \right]\left[ {{a^2}\;-\left( {{b^2}\;-2bc + {c^2}} \right)} \right]}\\{\;\;\;\;\;\;\;\;\; = \left[ {{{\left( {b + c} \right)}^2}\;-{a^2}} \right]\left[ {{a^2}\;-{{\left( {b-c} \right)}^2}} \right]}\\{\;\;\;\;\;\;\;\;\; = \left( {b + c + a} \right)\left( {b + c-a} \right)\left( {a + b-c} \right)\left( {a-b + c} \right)}\end{array}\)
Đáp án : A
Các bài tập cùng chuyên đề
Giá trị thỏa mãn \(2{x^2}\;-4x + 2 = 0\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Tính giá trị biểu thức \(P = {x^3}-3{x^2} + 3x\) với \(x = 1001\)
Tìm x, biết \(2 - 25{x^2} = 0\)
Đa thức \({x^6}-{y^6}\) được phân tích thành
Tính nhanh biểu thức \({37^2} - {13^2}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{\rm{ - }}81\) thành nhân tử:
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Chọn câu sai.
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Cho\(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Chọn câu đúng nhất:
Gọi\({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó\({x_1}\; + {x_2}\; + {x_3}\) bằng
Với a3 + b3 + c3 = 3abc thì