Nội dung từ Loigiaihay.Com
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + 2n + 1\end{array} \right.\left( {n \ge 1} \right)\). Giá trị của \(n\) để \( - {u_n} + 2023n + 2024 = 0\) là:
Tìm điểm chung của các số hạng của dãy số để tìm công thức số hạng tổng quát của dãy số, sau đó giải phương trình.
Ta có:
\(\begin{array}{l}{u_2} = {u_1} + 2.1 + 1 = 1 + 2.1 + 1 = 4 = {2^2}\\{u_3} = {u_2} + 2.2 + 1 = {2^2} + 2.2 + 1 = 9 = {3^2}\\{u_4} = {u_3} + 2.3 + 1 = {3^2} + 2.3 + 1 = 16 = {4^2}\\...\\{u_n} = {u_{n - 1}} + 2.\left( {n - 1} \right) + 1 = {\left( {n - 1} \right)^2} + 2.\left( {n - 1} \right) + 1 = {n^2}\end{array}\)
Suy ra \( - {u_n} + 2023n + 2024 = 0 \Leftrightarrow - {n^2} + 2023n + 2024 = 0 \Leftrightarrow \left[ \begin{array}{l}n = - 1\left( L \right)\\n = 2024\left( {TM} \right)\end{array} \right.\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho dãy số \(\left( {{u_n}} \right)\) được xác định như sau: \({u_1} = 1\) và \({u_{n + 1}} = 3 - {u_n}\) với \(n \ge 1.\) Số hạng \({u_2}\) bằng
Mệnh đề nào sau đây sai?
Cho dãy số \(\left( {{u_n}} \right)\). Khẳng định nào sau đây đúng?
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{n}{{n + 1}}\) với \(n \ge 1\). Số hạng thứ 10 của dãy số là:
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 10{u_n} - 9n\end{array} \right.\) với \(n \ge 1\). Ba số hạng đầu của dãy số là:
Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n.\left( {n + 1} \right)}}\) với \(n \in {\mathbb{N}^*}\). Lựa chọn đáp án đúng.
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{{n - 1}}{{2n + 1}}\). Dãy số \(\left( {{u_n}} \right)\) là:
Dãy số nào trong các dãy số sau là dãy số bị chặn?
Trong các dãy số sau đây, với giả thiết \(n \in {\mathbb{N}^*}\):
\({u_n} = {\left( {\frac{2}{3}} \right)^n};{v_n} = {\left( {\frac{4}{3}} \right)^n};{q_n} = \sin n + \cos n\)
Số dãy số bị chặn là:
Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào bị chặn trên:
Cho dãy số có các số hạng đầu là: 5; 10; 15; 20; 25; … Số hạng tổng quát của dãy số này là:
Tìm công thức tính số hạng tổng quát \({u_n}\) theo \(n\) của các dãy số sau : \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = {u_n} + 2\end{array} \right.\)
Dãy số \(\left( {{u_n}} \right)\) được xác định bởi công thức \({u_n} = 3 - 2n\) với \(n \in {\mathbb{N}^*}\). Tính tổng \(S = {u_1} + {u_2} + ... + {u_{10}}\).
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) biết: \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).
Cho dãy số \(\left( {{u_n}} \right)\) có tổng của \(n\) số hạng đầu cho bởi công thức \({S_n} = {3^n} - 1\). Khẳng định nào sau đây sai?
Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = \sqrt {2023} }\\{{u_n} = \sqrt {2023 + {u_{n - 1}}} }\end{array}} \right.\). Nhận định nào dưới đây là đúng?
Với giá trị nào của \(a\) thì dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{an - 1}}{{n + 2}},\forall n \in {\mathbb{N}^*}\) là dãy số tăng?
Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.,\forall n \in {\mathbb{N}^*}\). Tìm số hạng tổng quát \({u_n}\) của dãy số.
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = 2023\sin \frac{{n\pi }}{2} + 2024\cos \frac{{n\pi }}{3}\). Mệnh đề nào dưới đây đúng?