Đề bài

: Cho đường thẳng \(y = mx + m + 1\;\;\;\left( 1 \right)\) (m là tham số). Đường thẳng (1) luôn đi qua một điểm cố định mới mọi giá trị của m. Điểm cố định đó là:

  • A.
    (1; -1)
  • B.
    (1; 1)
  • C.
    (-1; -1)
  • D.
    (-1; 1)
Phương pháp giải
Gọi điểm \(\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đồ thị hàm số \(y = f\left( x \right)\) luôn đi qua.

Do đó, \({y_0} = f\left( {{x_0};m} \right)\) có nghiệm đúng với mọi m.

Lời giải của GV HocTot.Nam.Name.Vn

Gọi điểm \(N\left( {{x_0};{y_0}} \right)\) là điểm cố định của đường thẳng (1).

Ta có: \({y_0} = m{x_0} + m + 1\)

\({y_0} - m{x_0} - m - 1 = 0\)

\( - \left( {{x_0} + 1} \right)m + {y_0} - 1 = 0\)

\(\left\{ \begin{array}{l}{x_0} + 1 = 0\\{y_0} - 1 = 0\end{array} \right.\)    \(\left\{ \begin{array}{l}{x_0} =  - 1\\{y_0} = 1\end{array} \right.\)

Vậy đường thẳng (1) luôn đi qua điểm cố định (-1; 1).

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Trong các hình vẽ dưới đây, hình vẽ nào là đồ thị của hàm số \(y = 1 + 2x\)?

Xem lời giải >>
Bài 2 :

Cho đồ thị hàm số \(y = x + 1.\) Điểm nào dưới đây thuộc đồ thị hàm số trên?

Xem lời giải >>
Bài 3 :

Một người đi bộ trên đường thẳng với vận tốc v (km/h). Gọi s (km) là quãng đường đi được trong t (giờ). Khi đó, đồ thị của hàm số s theo biến t với \(v = 5\) đường thẳng nào trong hình vẽ dưới đây?

Xem lời giải >>
Bài 4 :

Cho đường thẳng d: \(y = 2x + m.\) Đường thẳng d đi qua điểm A(1; 5). Chọn đáp án đúng.

Xem lời giải >>
Bài 5 :

Cho hàm số bậc nhất \(y = \left( {2 - m} \right)x + m\). Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ 4.

Xem lời giải >>
Bài 6 :

Đồ thị của hàm số \(y = ax + b\left( {a \ne 0} \right)\) là:

Xem lời giải >>
Bài 7 :

Đồ thị hàm số \(y = ax + b\left( {a \ne 0} \right)\) là một đường thẳng cắt trục tung tại điểm có tung độ bằng:

Xem lời giải >>
Bài 8 :

Cho hai đường thẳng \({d_1}:y = x - 1\) và \({d_2}:y = 3 - 4x.\) Tung độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là:

Xem lời giải >>
Bài 9 :

Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ: \(y = x;y = x + 2;\)\(y =  - x + 2;y =  - x.\) Bốn đồ thị nói trên cắt nhau tại các điểm O(0; 0), A, B, C. Tứ giác có 4 đỉnh O, A, B, C là hình gì?

Xem lời giải >>
Bài 10 :

Cho hàm số \(y = mx + 2\) có đồ thị là đường thẳng \({d_1}\) và hàm số \(y = \frac{1}{2}x + 1\) có đồ thị là đường thẳng \({d_2}.\) Để đường thẳng \({d_1}\) và đường thẳng \({d_2}\) cắt nhau tại một điểm có hoành độ bằng 4 là:

Xem lời giải >>
Bài 11 :

Cho hàm số \(y = \left( {m - 1} \right)x - 1\) có đồ thị là đường thẳng \({d_1}\) và hàm số \(y = x + 1\) có đồ thị là đường thẳng \({d_2}.\) Để đường thẳng \({d_1}\) và đường thẳng \({d_2}\) cắt nhau tại một điểm có tung độ bằng 4 là:

Xem lời giải >>
Bài 12 :

Cho đường thẳng \({d_1}:y =  - x + 3\) và \({d_2}:y = 4 - 3x.\) Gọi A và B lần lượt là giao điểm của \({d_1}\) và \({d_2}\) với trục hoành. Tổng hoành độ giao điểm của hai điểm A và B là:

Xem lời giải >>
Bài 13 :

Cho đường thẳng d: \(y =  - 2x - 4.\) Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Diện tích tam giác OAB là:

Xem lời giải >>
Bài 14 :

Với giá trị nào của m thì ba đường thẳng \({d_1}:y = \left( {m - 1} \right)x - 3;{d_2}:y = 2x + 1;{d_3}:y = x - 3\) giao nhau tại một điểm?

Xem lời giải >>
Bài 15 :

Gọi \({d_1}\) là đồ thị của hàm số \(y = mx - 1\) và \({d_2}\) là đồ thị hàm số \(y = \frac{1}{2}x + 2\). Để M(2; 3) là giao điểm của \({d_1}\) và \({d_2}\) thì giá trị của m là:

Xem lời giải >>
Bài 16 :

Cho đường thẳng d được xác định bởi \(y = 2x + 10.\) Đường thẳng d’ đối xứng với đường thẳng d qua trục hoành là:

Xem lời giải >>
Bài 17 :

Cho đường thẳng d xác định bởi \(y = 2x + 4.\) Đường thẳng d’ đối xứng với đường thẳng d qua đường thẳng \(y = x\) là:

Xem lời giải >>
Bài 18 :

Tìm x sao cho ba điểm A(x; 14), B(-5; 20), C(7; -16) thẳng hàng.

Xem lời giải >>
Bài 19 :

Có bao nhiêu đường thẳng đi qua A(4; 3), cắt trục tung tại điểm có tung độ là một số nguyên dương, cắt trục hoành tại điểm có hoành độ làm một số nguyên tố.

Xem lời giải >>
Bài 20 :

Hệ số góc của đường thẳng \(y = 2x + 1\) là:

Xem lời giải >>