Nội dung từ Loigiaihay.Com
Một bạn học sinh làm như sau $5\mathop = \limits_{\left( 1 \right)} \sqrt {25} \mathop = \limits_{\left( 2 \right)} \sqrt {16 + 9} \mathop = \limits_{\left( 3 \right)} \sqrt {16} + \sqrt 9 \mathop = \limits_{\left( 4 \right)} 4 + 3\mathop = \limits_{\left( 5 \right)} 7$ . Chọn kết luận đúng.
Bạn đã làm đúng.
Bạn đã làm sai từ bước \(\left( 1 \right)\).
Bạn đã làm sai từ bước \(\left( 2 \right)\).
Bạn đã làm sai từ bước \(\left( 3 \right)\).
Ta không có tính chất sau: \(\sqrt {A + B} = \sqrt A + \sqrt B \)
Vì \(\sqrt {16 + 9} < \sqrt {16} + \sqrt 9 \,\left( {{\rm{do }}\sqrt {25} = 5 < 7} \right)\) nên bạn đã làm sai từ bước (3).
Đáp án : D
Các bài tập cùng chuyên đề
Chọn câu đúng
Vì \({3^2} = ...\) nên \(\sqrt {...} = 3\). Hai số thích hợp điền vào chỗ trống lần lượt là
Chọn câu đúng.
Tính \(\sqrt {49} \)
Chọn câu đúng.
So sánh hai số \(\sqrt {9.16} \) và \(\sqrt 9 .\sqrt {16} \)
Tìm \(x \in \mathbb{Q}\) biết \({x^2} = 225\).
Tìm \(x\) thỏa mãn \(\sqrt {2x} = 6\).
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\sqrt {2x + 3} = 25\)
So sánh \(A = \sqrt 7 + \sqrt {15} \) và \(7.\)