Nội dung từ Loigiaihay.Com
Thương của phép chia đa thức một biến bậc 6 cho đa thức một biến bậc 2 là đa thức bậc mấy?
2
3
4
Không xác định được
Viết dạng tổng quát của phép chia đa thức bậc 6 cho đa thức bậc 2
Ta có: Đa thức biến x bậc 6 có dạng: a6 . x6 + a5 . x5 + a4 . x4 + a3 . x3 + a2 . x2 + a1. x + a0 (a6 khác 0)
Đa thức biến x bậc 2 có dạng: b2 . x2 + b1. x + b0 (b2 khác 0)
Khi chia đa thức biến x bậc 6 cho đa thức biến x bậc 2, đầu tiên, ta lấy hạng tử : a6 . x6 chia cho b2 . x2 nên thu được đa thức thương có bậc là 6 – 2 = 4
Đáp án : C
Các bài tập cùng chuyên đề
Tìm kết quả của phép chia 8x4 - 2x3 cho 4x2
Phép chia 2x4 – x3 + 2x – 1 cho x2 – x + 1 có thương là:
Phép chia 2x5 – 3x3 + 1 cho -2x3 + 3 có dư là:
Tìm đa thức bị chia biết đa thức chia là \(\left( {{x^2} + x + 1} \right)\), thương là \(\left( {x + 3} \right)\), dư là \(x - 2\):
Tính giá trị biểu thức \(A = \left( {4{x^3} + 3{x^2} - 2x} \right):\left( {{x^2} + \dfrac{3}{4}x - \dfrac{1}{2}} \right)\) tại \(x = 2\)
Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\):
Xác định a để \(\left( {6{x^3} - 7{x^2} - x + a} \right):\left( {2x + 1} \right)\) dư \(2\):
Cho \(P = \dfrac{{2{n^3} - 3{n^2} + 3n - 1}}{{n - 1}}\). Có bao nhiêu giá trị \(n \in Z\) để \(P \in Z\).