Đề bài

Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

  • A.

    \(\widehat {z'At'}\)

  • B.

    \(\widehat {z'At}\)

  • C.

    \(\widehat {zAt'}\)

  • D.

    \(\widehat {zAt}\)

Phương pháp giải

Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia Az và At, từ đó xác định góc đối đỉnh với \(\widehat {zAt}\).

Lời giải của GV HocTot.Nam.Name.Vn

Vì hai đường thẳng \(zz'\)  và \(tt'\)  cắt nhau tại \(A\)  nên \(Az'\)  là tia đối của tia \(Az,At'\) là tia đối của tia \(At.\) Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

Xem lời giải >>
Bài 2 :

Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

Xem lời giải >>
Bài 3 :

Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau  tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

Xem lời giải >>
Bài 4 :

Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

Xem lời giải >>
Bài 5 :

Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

Xem lời giải >>
Bài 6 :

Cho hình vẽ sau. Biết góc $xOy'$  đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

Xem lời giải >>
Bài 7 :

Vẽ góc $xOy$ có số đo bằng  $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

Xem lời giải >>
Bài 8 :

Hai đường thẳng $xy$  và $x'y'$  cắt nhau tại $O.$  Biết \(\widehat {xOx'} = {70^o}\). $Ot$  là tia phân giác của góc xOx’. $Ot'$  là tia đối của tia $Ot.$ Tính số đo góc $yOt'.$

Xem lời giải >>
Bài 9 :

Cho đường thẳng $AB$  và điểm $O$  trên đường thẳng đó. Trên cùng một nửa mặt phẳng bờ $AB$  vẽ hai tia $OC$  và $OD$  sao cho \(\widehat {AOC} = \widehat {BOD} = {50^o}\). Trên nửa mặt phẳng bờ $AB$  không chứa tia $OD,$  vẽ tia $OE$ sao cho tia $OA$  là tia phân giác của góc $COE.$ Chọn câu đúng?

Xem lời giải >>
Bài 10 :

Cho \(\widehat {AOB} = 50^\circ \) , tia \(OC\) là tia phân giác của \(\widehat {AOB}\). Gọi \(OD\) là tia đối của tia \(OC\). Trên nửa mặt phẳng bờ \(CD\) chứa tia \(OA\), vẽ tia \(OE\) sao cho \(\widehat {DOE} = 25^\circ \). Góc nào dưới đây đối đỉnh với \(\widehat {DOE}\).

Xem lời giải >>
Bài 11 :

Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại $O$ tạo thành \(\widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)

Xem lời giải >>
Bài 12 :

Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Chọn phát biểu sai trong các phát biểu sau:

Xem lời giải >>
Bài 14 :

Cho $Ot$ là tia phân giác của \(\widehat {xOy}\). Biết \(\widehat {xOy} = {100^0}\), số đo của \(\widehat {xOt}\) là:

Xem lời giải >>
Bài 15 :

Cho \(\widehat {xOy}\) là góc vuông có tia On là phân giác, số đo của \(\widehat {xOn}\) là:

Xem lời giải >>
Bài 16 :

Cho tia \(On\)  là tia phân giác của \(\widehat {mOt}\). Biết \(\widehat {mOn} = {70^0}\), số đo của \(\widehat {mOt}\) là:

Xem lời giải >>
Bài 17 :

Cho \(\widehat {AOB} = 90^\circ \) và tia \(OB\) là tia phân giác của góc \(AOC.\) Khi đó góc \(AOC\) là

Xem lời giải >>
Bài 18 :

Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\)  sao cho \(OA\)  là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).

Xem lời giải >>
Bài 19 :

Cho \(\widehat {AOB} = {110^0}\) và \(\widehat {AOC} = {55^0}\) sao cho \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau. Chọn câu sai.

Xem lời giải >>
Bài 20 :

Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy} = 120^\circ \) và tia \(Ot\) là tia phân giác của \(\widehat {yOz}.\) Tính số đo góc \(xOt.\)

Xem lời giải >>