Bài 9 trang 92 SGK Toán 7 tập 2

Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại A.

Đề bài

Chứng minh rằng: Nếu tam giác \(ABC\) có đường trung tuyến xuất phát từ \(A\) bằng một nửa cạnh \(BC\) thì tam giác đó vuông tại \(A.\)

Ứng dụng: Một tờ giấy bị rách ở mép (h.65). Hãy dùng thước và compa dựng đường vuông góc ở cạnh \(AB\) tại \(A.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất của tam giác cân.

- Áp dụng định lí tổng ba góc trong tam giác.

Lời giải chi tiết

Giả sử \(∆ABC\) có \(AD\) là đường trung tuyến ứng với \(BC\) và  \(AD = \dfrac{1}{2}BC\).

\( \Rightarrow   AD = BD = DC\). 

Hay \(∆ADC, ∆ADB\) cùng cân tại \(D\). Do đó: 

 \(\left. {\matrix{ {\widehat {{A_1}} = \widehat {{C_1}}}  \cr  {\widehat {{A_2}} = \widehat {{B_1}}}  \cr  } } \right\} \Rightarrow \widehat {{A_1}} + \widehat {{A_2}} = \widehat {{B_1}} + \widehat {{C_1}}\)

Mà  \(\widehat {{A_1}} + \widehat {{A_2}} + \widehat {{B_1}} + \widehat {{C_1}}\)\(=\widehat {{BAC}}+ \widehat {{B_1}} + \widehat {{C_1}} = {180^o}\) (Theo định lí tổng ba góc trong \(∆ABC\))

\( \Rightarrow \)  \(\widehat {{A_1}} + \widehat {{A_2}} = \dfrac{180^0}{2}={90^o}\)

Hay \(∆ABC\) vuông tại \(A.\)

Áp dụng

- Vẽ đường tròn \((A;r)\);  \(r > \dfrac{{AB}}{2}\); vẽ đường tròn \((B, r)\)

- Gọi \(C\) là giao điểm của \(2\) cung tròn nằm ở phía trong tờ giấy.

- Trên tia \(BC\) lấy \(D\) sao cho \(BC = CD\) \( \Rightarrow  AB  ⊥ AD.\)

Thật vậy: \(∆ABD\) có \(AC\) là trung tuyến ứng với \(BD\) (\(BD = CD\)) và \(AC = BC = CD\) (theo cách vẽ).

\( \Rightarrow  AC = \dfrac{1}{2} BD\) 

\( \Rightarrow   ∆ ABD\) vuông tại \(A.\)

HocTot.Nam.Name.Vn

  • Bài 10 trang 92 SGK Toán 7 tập 2

    Giải bài 10 trang 92 SGK Toán 7 tập 2. Cho hình 66. Không vẽ giao điểm của a, b, hãy nêu cách vẽ đường thẳng đi qua giao điểm này và điểm M.

  • Bài 11 trang 92 SGK Toán 7 tập 2

    Giải bài 11 trang 92 SGK Toán 7 tập 2. Đố: Cho tam giác ABC. Em hãy tô màu để xác định phần bên trong của tam giác gồm các điểm M sao cho:

  • Bài 8 trang 92 SGK Toán 7 tập 2

    Giải bài 8 trang 92 SGK Toán 7 tập 2. a)∆ABE= ∆HBE. b)BE là đường trung trực của đoạn thẳng AH.

  • Bài 7 trang 92 SGK Toán 7 tập 2

    Giải bài 7 trang 92 SGK Toán 7 tập 2. Từ một điểm M trên tia phân giác của góc nhọn xOy, kẻ đường vuông góc với cạnh O (tại A), đường thẳng này cắt cạnh Oy tại B.

  • Bài 6 trang 92 SGK Toán 7 tập 2

    Giải bài 6 trang 92 SGK Toán 7 tập 2. a) Hãy tính các góc DCE và DEC. b) Trong tam giác CDE, cạnh nào lớn nhất? Tại sao?

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close