Bài 53 trang 113 SGK Đại số và Giải tích 12 Nâng caoTìm các giới hạn sau:
Lựa chọn câu để xem lời giải nhanh hơn
Tìm các giới hạn sau: LG a \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over x}\) Phương pháp giải: Sử dụng giới hạn \(\mathop {\lim }\limits_{u \to 0} \frac{{\ln \left( {1 + u} \right)}}{u} = 1\) Lời giải chi tiết: \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over x} = \mathop {\lim }\limits_{x \to 0} \frac{{3\ln \left( {1 + 3x} \right)}}{{3x}}\) \(= 3.\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over {3x}} = 3.1=3\). LG b \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + {x^2}} \right)} \over x}\) Lời giải chi tiết: Vì \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + {x^2}} \right)} \over {{x^2}}} = 1\) nên: \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + {x^2}} \right)} \over x} \) \(=\mathop {\lim }\limits_{x \to 0} {{x\ln \left( {1 + {x^2}} \right)} \over {x^2}}\) \( = \mathop {\lim }\limits_{x \to 0} \left[ {x.\frac{{\ln \left( {1 + {x^2}} \right)}}{{{x^2}}}} \right] \) \(= \mathop {\lim }\limits_{x \to 0} x.\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + {x^2}} \right)}}{{{x^2}}} = 0.1 = 0\) HocTot.Nam.Name.Vn
|