Bài 4 trang 39 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Giải các phương trình :

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Giải các phương trình :

a) \(\sqrt {11x - 8}  = 6\);             

b) \(\sqrt {2x + 1}  + 1 = x\);

c) \(2\sqrt {x - 1}  + \dfrac{1}{3}\sqrt {9x - 9}  = 15\);   

d) \(3\sqrt {27x}  - 2\sqrt {12x}  - 5 = 10\);

e) \(\sqrt {{x^2} - 12x + 36}  + 3 = 10\);   

f) \(\sqrt {x + 3 + 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 5\).

Phương pháp giải - Xem chi tiết

+) Tìm ĐKXĐ của x.

+) Sử dụng các công thức biến đổi căn bậc hai để giải phương trình.

 

Lời giải chi tiết

\(a)\;\sqrt {11x - 8}  = 6\;\)

Điều kiện: \(11x - 8 \ge 0 \Leftrightarrow x \ge \dfrac{8}{{11}}.\)

\(\begin{array}{l}Pt \Leftrightarrow 11x - 8 = 36\\ \Leftrightarrow 11x = 44\\ \Leftrightarrow x = 4\;\;\left( {tm} \right).\end{array}\)

Vậy \(x = 4.\)

\(b)\;\sqrt {2x + 1}  + 1 = x\)

Điều kiện: \(2x + 1 \ge 0 \Leftrightarrow x \Leftrightarrow  - \dfrac{1}{2}.\)

\(\begin{array}{l}Pt \Leftrightarrow \sqrt {2x + 1}  = x - 1\\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 \ge 0\\2x + 1 = {\left( {x - 1} \right)^2}\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2x + 1 = {x^2} - 2x + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\{x^2} - 4x = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\end{array} \right. \Leftrightarrow x = 4.\end{array}\)

Vậy \(x = 4.\)

\(\begin{array}{l}c)\;2\sqrt {x - 1}  + \dfrac{1}{3}\sqrt {9x - 9}  = 15\;\\ \Leftrightarrow 2\sqrt {x - 1}  + \dfrac{1}{3}\sqrt {9\left( {x - 1} \right)}  = 15\end{array}\)

Điều kiện: \(x - 1 \ge 0 \Leftrightarrow x \ge 1.\)

\(\begin{array}{l}Pt \Leftrightarrow 2\sqrt {x - 1}  + \sqrt {x - 1}  = 15\\ \Leftrightarrow 3\sqrt {x - 1}  = 15\\ \Leftrightarrow \sqrt {x - 1}  = 5\\ \Leftrightarrow x - 1 = 25\\ \Leftrightarrow x = 26.\end{array}\)

Vậy \(x = 26.\)

\(d)\;3\sqrt {27x}  - 2\sqrt {12x}  - 5 = 10\)

Điều kiện: \(x \ge 0.\)

\(\begin{array}{l}Pt \Leftrightarrow 3\sqrt {{3^2}.3x}  - 2\sqrt {{2^2}.3x}  - 5 = 10\\ \Leftrightarrow 9\sqrt {3x}  - 6\sqrt {3x}  - 15 = 0\\ \Leftrightarrow 3\sqrt {3x}  = 15\\ \Leftrightarrow 27x = 225\\ \Leftrightarrow x = \dfrac{{25}}{3}\;\;\left( {tm} \right).\end{array}\)

Vậy \(x = \dfrac{{25}}{3}.\)

\(e)\;\;\sqrt {{x^2} - 12x + 36}  + 3 = 10\)

Điều kiện: \({x^2} - 12x + 36 \ge 0 \Leftrightarrow {\left( {x - 6} \right)^2} \ge 0\;\;\forall x.\)

\(\begin{array}{l}Pt \Leftrightarrow \sqrt {{x^2} - 12x + 36}  = 7\\ \Leftrightarrow \sqrt {{{\left( {x - 6} \right)}^2}}  = 7\\ \Leftrightarrow \left| {x - 6} \right| = 7\\ \Leftrightarrow \left[ \begin{array}{l}x - 6 = 7\\x - 6 =  - 7\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 13\\x =  - 1\end{array} \right..\end{array}\)

Vậy \(x \in \left\{ { - 1;\;13} \right\}.\)

\(f)\;\sqrt {x + 3 + 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 5\)

\(\begin{array}{l} \Leftrightarrow \sqrt {x - 1 + 4\sqrt {x - 1}  + 4}  + \sqrt {x - 1 - 6\sqrt {x - 1}  + 9}  = 5\\ \Leftrightarrow \sqrt {{{\left( {\sqrt {x - 1}  + 2} \right)}^2}}  + \sqrt {{{\left( {\sqrt {x - 1}  - 3} \right)}^2}}  = 5\end{array}\)

Điều kiện: \(x - 1 \ge 0 \Leftrightarrow x \ge 1.\)

\(\begin{array}{l}PT \Leftrightarrow \left| {\sqrt {x - 1}  + 2} \right| + \left| {\sqrt {x - 1}  - 3} \right| = 5\\ \Leftrightarrow \sqrt {x - 1}  + 2 + \left| {\sqrt {x - 1}  - 3} \right| = 5\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 1}  + \sqrt {x - 1}  - 3 = 3\;\;\;\;\;\left( {khi\;\;\sqrt {x - 1}  - 3 \ge 0} \right)\\\sqrt {x - 1}  - \sqrt {x - 1}  + 3 = 2\;\;\;\;\;\left( {khi\;\;\sqrt {x - 1}  - 3 < 0} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2\sqrt {x - 1}  = 6\;\;\;\;\left( {khi\;\;x \ge 9} \right)\\3 = 2\;\;\left( {VN} \right)\end{array} \right.\\ \Leftrightarrow \sqrt {x - 1}  = 3\\ \Leftrightarrow x - 1 = 9\\ \Leftrightarrow x = 10\;\;\left( {tm} \right)\end{array}\)

Vậy \(x = 10.\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close