Lựa chọn câu để xem lời giải nhanh hơn
Tìm các tiệm cận của đồ thị hàm số sau:
LG a
\(\,y = {{2x - 1} \over {{x^2}}} + x - 3\,;\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ 0 \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 3} \right)} \right] \) \(= \mathop {\lim }\limits_{x \to \pm \infty } {{2x - 1} \over {{x^2}}} \) \(= \mathop {\lim }\limits_{x \to \pm \infty } \left( {{2 \over x} - {1 \over {{x^2}}}} \right) = 0\) nên y = x – 3 là tiệm cận xiên.
LG b
\(\,\,{{{x^3} + 2} \over {{x^2} - 2x}}\)
Phương pháp giải:
Đường thẳng y=ax+b (\(a\ne 0\)) là TCX của đồ thị hàm số y=f(x) khi và chỉ khi
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\)
hoặc \(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ {0;2} \right\}\)
* \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty \) nên \(x = 2\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax +b\)
\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + 2} \over {{x^3} - 2{x^2}}} \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {2 \over {{x^3}}}} \over {1 - {2 \over x}}} = 1 \cr
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right)\cr& = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + 2} \over {{x^2} - 2x}} - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2{x^2} + 2} \over {{x^2} - 2x}} \cr&= \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2 + \frac{2}{{{x^2}}}}}{{1 - \frac{2}{x}}}= 2 \cr} \)
Đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.
LG c
\(\,\,{{{x^3} + x + 1} \over {{x^2} - 1\,}}\,\,;\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty \) nên \(x = -1\) là tiệm cận đứng .
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên \(x = 1\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax + b\)
\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + x + 1} \over {x\left( {{x^2} - 1} \right)}}\cr& = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over {{x^2}}} + {1 \over {{x^3}}}} \over {1 - {1 \over {{x^2}}}}} = 1 \cr
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + x + 1} \over {{x^2} - 1}}-x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2x + 1} \over {{x^2} - 1}} = 0 \cr} \)
\( \Rightarrow y = x\) là tiệm cận xiên.
LG d
\(\,\,{{{x^2} + x + 1} \over { - 5{x^2} - 2x + 3}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;{3 \over 5}} \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over { - 5 - {2 \over x} + {3 \over {{x^2}}}}} = - {1 \over 5}\) nên \(y = - {1 \over 5}\) là tiệm cận ngang.
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = - \infty \) nên \(x = -1\) là tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty \) nên \(x = {3 \over 5}\) là tiệm cận đứng.
HocTot.Nam.Name.Vn