Đề bài
Ta thừa nhận tính chất sau đây: Với \(a \ne 0,a \ne \pm 1\) nếu \(a^{m}=a^{n}\) thì \(m = n.\) Dựa vào tính chất này, hãy tìm các số tự nhiên \(m\) và \(n\), biết
\(\begin{gathered} a)\,\,{\left( {\frac{1}{2}} \right)^m} = \frac{1}{{32}} \hfill \\ b)\,\,\,\frac{{343}}{{125}} = {\left( {\frac{7}{5}} \right)^n} \hfill \\ \end{gathered} \)
Video hướng dẫn giải
VIDEO
Áp dụng công thức:\({\left( {\dfrac{x}{y}} \right)^n} = \dfrac{{{x^n}}}{{{y^n}}}\,\,\left( {y \ne 0} \right)\)
Lời giải chi tiết
\(\eqalign{ & a)\,\,{\left( {{1 \over 2}} \right)^m} = {1 \over {32}} \Rightarrow {\left( {{1 \over 2}} \right)^m} = {1 \over {{2^5}}} \cr & \Rightarrow {\left( {{1 \over 2}} \right)^m} = {\left( {{1 \over 2}} \right)^5} \Rightarrow m = 5 \cr & b)\,\,\,{{343} \over {125}} = {\left( {{7 \over 5}} \right)^n} \Rightarrow {{{7^3}} \over {{5^3}}} = {\left( {{7 \over 5}} \right)^n} \cr & \Rightarrow {\left( {{7 \over 5}} \right)^3} = {\left( {{7 \over 5}} \right)^n} \Rightarrow n = 3 \cr} \)
HocTot.Nam.Name.Vn