Bài 32 trang 28 SGK Đại số và Giải tích 12 Nâng cao

Hướng dẫn. b) Viết công thức đã cho dưới dạng

Lựa chọn câu để xem lời giải nhanh hơn

Xác định tâm đối xứng của đồ thị mỗi hàm số sau đây:

LG a

\(y = {2 \over {x - 1}} + 1;\)

Lời giải chi tiết:

Ta có: \(y = {2 \over {x - 1}} + 1 \Leftrightarrow y - 1 = {2 \over {x - 1}}\)
Đặt

\(\left\{ \matrix{
y - 1 = Y \hfill \cr 
x - 1 = X \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = Y + 1 \hfill \cr 
x = X + 1 \hfill \cr} \right.\)

Đây là công thức chuyển hệ tọa độ trong phép tịnh tiến theo \(\overrightarrow {OI} \) với I(1;1).

Đối với hệ trục IXY, hàm số \(Y = {2 \over X}\) là hàm số lẻ nên nhận I làm tâm đối xứng.

Vậy đồ thị hàm số \(y = {2 \over {x - 1}} + 1\) nhận I(1;1) làm tâm đối xứng.

LG b

\(y = {{3x - 2} \over {x + 1}}\)

Phương pháp giải:

Viết công thức đã cho dưới dạng \(y = 3 - {5 \over {x + 1}}\).

Lời giải chi tiết:

Ta có \(y = {{3x - 2} \over {x + 1}} = {{3\left( {x + 1} \right) - 5} \over {x + 1}} = 3 - {5 \over {x + 1}} \) \(\Leftrightarrow y - 3 = {{ - 5} \over {x + 1}}\)
Đặt

\(\left\{ \matrix{
x + 1 = X \hfill \cr 
y - 3 = Y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = X - 1 \hfill \cr 
y = Y + 3 \hfill \cr} \right.\)

Đây là công thức chuyển hệ tọa độ trong phép tịnh tiến theo \(\overrightarrow {OI} \) với I(-3;3)

\(Y = {{ - 5} \over X}\) là phương trình của (C) đối với hệ tọa độ IXY

\(Y = {{ - 5} \over X}\) là hàm lẻ nên nhận gốc tọa độ I làm tâm đối xứng.

Vậy đồ thị hàm số \(y = {{3x - 2} \over {x + 1}}\) nhận I(-3;3) làm tâm đối xứng.

HocTot.Nam.Name.Vn

  • Bài 33 trang 28 SGK Đại số và Giải tích 12 Nâng cao

    Cho đường cong (C) có phương trình , trong đó , và điểm thỏa mãn: . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và phương trình của (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C).

  • Bài 31 trang 27 SGK Đại số và Giải tích 12 Nâng cao

    Cho đường cong (C) có phương trình là và điểm. Viết công thức chuyển hệ tọa độtrong phép tịnh tiến theo vectơ và viết phương trình của đường cong (C) đối với hệ tọa độ IXY. Từ đó suy ra I là tâm đối xứng của (C).

  • Bài 30 trang 27 SGK Đại số và Giải tích 12 Nâng cao

    Cho hàm số a) Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của phương trình b) Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ và viết phương trình của đường cong (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C). c) Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hệ tọa độ Oxy. Chứng minh rằng trên khoảng đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng đ

  • Bài 29 trang 27 SGK Đại số và Giải tích 12 Nâng cao

    Xác định đỉnh I của mỗi parabol (P) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và ciết phương trình của parabol (P) đối với hệ tọa độ IXY.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close