Bài 21 trang 28 SGK Hình học 12 Nâng cao

Cho điểm M nằm trong hình tứ diện đều ABCD. Chứng minh rằng tổng các khoảng cách từ M tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a ?

Tổng hợp đề thi giữa kì 2 lớp 12 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Cho điểm \(M\) nằm trong hình tứ diện đều \(ABCD\). Chứng minh rằng tổng các khoảng cách từ \(M\) tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a?

Lời giải chi tiết

Gọi \({H_1},{H_2},{H_3},{H_4}\) lần lượt là hình chiếu của điểm M trên các mặt phẳng \((BCD) , (ACD) , (ABD) , (ABC)\).
Khi đó \(M{H_1},M{H_2},M{H_3},M{H_4}\) lần lượt là khoảng cách từ điểm \(M\) tới các mặt phẳng đó. Các mặt bên của tứ diện đều có cùng diện tích, ta kí hiệu các diện tích đó là \(S\) và gọi \(h\) là chiều cao của tứ diện đều. Ta có:

\(\eqalign{
& {V_{MBCD}} + {V_{MACD}} \cr&+ {V_{MABD}} + {V_{MABC}} = {V_{ABCD}} \cr 
& \Leftrightarrow {1 \over 3}S.M{H_1} + {1 \over 3}S.M{H_2} \cr &+ {1 \over 3}S.M{H_3} + {1 \over 3}S.M{H_4} = {1 \over 3}S.h \cr 
&  \Leftrightarrow \frac{1}{3}S\left( {M{H_1} + M{H_2} + M{H_3} + M{H_4}} \right) \cr &= \frac{1}{3}Sh\cr &\Leftrightarrow M{H_1} + M{H_2} + M{H_3} + M{H_4} = h \cr} \)

Vậy tổng các khoảng cách từ điểm \(M\) tới bốn mặt của tứ diện đều không phụ thuộc vào vị trí của điểm \(M\) nằm trong tứ diện đó.
Nếu tứ diện đều có cạnh bằng \(a\), ta tính \(h\).
Gọi \(H\) là trực tâm tam giác đều \(BCD\) và \(M\) là trung điểm của \(CD\).

Ta có:

\(\eqalign{
& {h^2} = A{H^2} = A{M^2} - H{M^2} \cr &= {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {\left( {{1 \over 3}.{{a\sqrt 3 } \over 2}} \right)^2} \cr 
&  = {{3{a^2}} \over 4} - {{{a^2}} \over {12}} = {{2{a^3}} \over 3} \cr &\Rightarrow h = {{a\sqrt 6 } \over 3} \cr} \)

Tổng khoảng cách nói trên bằng \({{a\sqrt 6 } \over 3}\).

HocTot.Nam.Name.Vn

  • Bài 22 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác đều ABC.A'B’C. Gọi M là trung điểm của AA’. Mặt phẳng đi qua M, B’, C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

  • Bài 23 trang 29 SGK Hình học 12 Nâng cao

    Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng:

  • Bài 24 trang 29 SKG Hình học 12 Nâng cao

    Khối chóp S.ABCD có đáy là hình bình hành, M là trung điểm của cạnh SC. Mặt phẳng (P) đi qua AM, song song với BD chia khối chóp thành hai phần. Tính tỉ số thể tích cùa hai phần đó.

  • Bài 25 trang 29 SGK Hình học 12 Nâng cao

    Chứng minh rằng nếu có phép vị tự tỉ số k biến tứ diện ABCD thành tứ diện A’B’C’D’ thì

  • Bài 20 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, c, cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. a) Tính thể tích của khối lăng trụ đó. b) Chứng minh rằng mặt bên BCCB' là một hình chữ nhật. c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A'B'C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).

close