Bài 2 trang 7 Vở bài tập toán 9 tập 2

Giải Bài 2 trang 7, 8 VBT toán 9 tập 2. Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.Nam.Name.Vn và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

LG a

3x – y =2 

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(3x - y = 2 \Leftrightarrow y = 3x - 2\)

Vậy nghiệm tổng quát của phương trình là \(\left( {x;3x - 2} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {0; - 2} \right)\) và \(B\left( {2;4} \right)\).

Vẽ hình 2:  

LG b

x + 5y = 3

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(x + 5y = 3 \Leftrightarrow x = 3 - 5y\)

Vậy nghiệm tổng quát của phương trình là \(\left( {3 - 5y;y} \right)\) với \(y \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {3;0} \right)\) và \(B\left( { - 2;1} \right)\).

Vẽ hình 3:

LG c

4x – 3y = -1  

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(4x - 3y =  - 1 \Leftrightarrow y = \dfrac{4}{3}x + \dfrac{1}{3}\) 

Vậy nghiệm tổng quát của phương trình là \(\left( {x;\dfrac{4}{3}x + \dfrac{1}{3}} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( { - 1; - 1} \right)\) và \(B\left( {2;3} \right)\).

Vẽ hình 4:

LG d

0x + 2y = 5

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(0x + 2y = 5 \Leftrightarrow y = \dfrac{5}{2}\) 

Vậy nghiệm tổng quát của phương trình là \(\left( {x;\dfrac{5}{2}} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {0;\dfrac{5}{2}} \right)\) và \(B\left( {1;\dfrac{5}{2}} \right)\).

Vẽ hình 5:

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close