Bài 12 Trang 153 SGK Đại số và Giải tích 12 Nâng caoHãy tính Đề bài Cho biết \(\int\limits_0^3 {f\left( z \right)dz} = 3,\int\limits_0^4 {f\left( x \right)} dx = 7.\) Hãy tính \(\int\limits_3^4 {f\left( t \right)dt.} \) Phương pháp giải - Xem chi tiết Sử dụng tính chất của tích phân \(\int\limits_a^c {f\left( x \right)dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_b^c {f\left( x \right)dx} \) và \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( u \right)du} \) Lời giải chi tiết Vì \(\int\limits_0^3 {f\left( z \right)dz} = 3\) nên \(\int\limits_0^3 {f\left( t \right)dt} = 3\). Vì \(\int\limits_0^4 {f\left( x \right)} dx = 7 \) nên \(\int\limits_0^4 {f\left( t \right)} dt = 7 \) Ta có: \(\begin{array}{l} HocTot.Nam.Name.Vn
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|